

INFORME FINAL

RONDA INTERLABORATORIO PARA ANÁLISIS DE SUELOS AGROPECUARIOS

Fecha de emisión: 31 de octubre de 2011

ÍNDICE

1.	LISTA DE PARTICIPANTES	3
2.	UBICACIÓN DE LABORATORIOS	7
3.	INTRODUCCIÓN	8
	3.1 Presentación del Programa PROINSA	8
	3.2 Justificación	8
	3.3 Objetivos del PROINSA	8
	3.4 Laboratorios participantes	9
4.	MUESTRA ENVIADA	9
	4.1 Preparación de la muestra	9
	4.2. Valores de referencia	9
	4.3 Homogeneidad	9
5.	RESULTADOS ENVIADOS POR LOS LABORATORIOS	9
	5.1 Datos enviados	9
	5.2 Métodos de ensayo	10
6.	TRATAMIENTO ESTADÍSTICO DE LOS RESULTADOS	10
7.	EVALUACIÓN DE DESEMPEÑO DE LOS LABORATORIOS	11
8.	COMENTARIOS	12
9.	BIBLIOGRAFÍA	14
10	ANEXO 1 – Tablas y gráficos	15

1. LISTA DE PARTICIPANTES

AGROANALISIS Laboratorio

Maipú N°2570 Rosario, Santa Fe

AGROASSAY AMERICA SA

Acceso Norte Lito Rodriguez N°380 América, Buenos Aires

Agronomía El Galpón

Av. Frondizi N°1151 Coronel Pringles, Buenos Aires

Agrolaboratorio Terra

Córdoba N°252 Córdoba, Córdoba

Asociación de Cooperativas Argentinas Pergamino

RUTA 8 Km 229,5 Pergamino, Buenos Aires

Asociación para el desarrollo de Villa Elisa y zona

Héctor de Elia N°1247 Villa Elisa. Entre Ríos

Bolsa de Comercio de Rosario

Córdoba N°1402 Rosario. Santa Fe

Bolsa de Comercio de Santa Fe

San Martín N°2231 Santa Fe, Santa Fe

C&D Laboratorio

Calle 65 N° 1312 La Plata, Buenos Aires

Cámara Arbitral de Cereales de Entre Ríos

Urquiza N°645 Paraná, Entre Ríos

Cámara de Cereales de Córdoba

Bv. Ocampo N°317 Córdoba, Córdoba

CANAGRO

España Nº 4419 Olavarría, Buenos Aires CE.ME.GA.

Leandro N. Alem S/N Villa Valeria, Córdoba

CLEMOS Lab de Análisis Agropecuario

Catamarca N°1080 Villa María, Córdoba

CONSULTAGRO Estudio Agronómico

Bv. Belgrano Nº 453 Rufino, Santa Fe

Departamento Provincial de Aguas

Belgrano N°86 Luis Beltrán, Río Negro

Estación Experimental Agroindustrial Obispo Colombres

William Cross No 3150 El Colmenar, Tucumán

El Terruño

Mitre N°1143 Gálvez, Santa Fe

ESAGRO

Lisandro de la Torre N°674 Santa Rosa, La Pampa

Facultad de Agronomía y Veterinaria. UNRC

Ruta Nacional 36 Km 601 Río Cuarto, Córdoba

Facultad de Ciencias Agrarias. UNNE

Cátedra Edafología Sargento Cabral N°2131 Corrientes, Corrientes

Facultad de Ciencias Agrarias. UNL Laboratorio de Análisis de Suelos y Aguas

Kreder Nº 2805 Esperanza, Santa Fe

Facultad de Ciencias Agrarias y Forestales.

UNLP. Cátedra de Edafología

60 y 119

La Plata, Buenos Aires

Facultad de Ciencias Agropecuarias. UNER Laboratorio de Análisis de Suelos

Ruta 11 Km 10,5 Oro Verde, Entre Ríos

FERTILAB

Moreno N°4524 Mar del Plata, Buenos Aires

GESTAR ASOCIADOS

Presidente Perón N°1031 Lincoln, Buenos Aires

HORIZONTE Laboratorio Agropecuario

Gral. Paz Nº 272 Tandil, Buenos Aires

HORIZONTES Laboratorio Agropecuario

Escribano Luis Morelli N°188 Las Varillas, Córdoba

HUMUS SRL

Abreu de Figueroa 2957 Córdoba, Córdoba

IACA Laboratorio

Calle Darwin N°530 Bahía Blanca, Buenos Aires

INGEIS - CONICET - UBA

Pabellón INGEIS –Ciudad Universitaria, Int. Gúiraldes S/N Ciudad Autónoma de Buenos Aires

Ingenio y Refinería San Martín del Tabacal SRL

Ruta Nacional 50 – Km 6,5 Orán (El Tabacal), Salta

Instituto Agrotécnico P. M. Fuentes Godo - UNNE

Av. Las Heras N°727 Resistencia, Chaco

Instituto Pablo A. Pizzurno

Alte. Brown y H. Fumagalli S/N Hernando, Córdoba

INTA EEA Balcarce

Ruta 226 Km 73,5 Balcarce, Buenos Aires

INTA EEA Bariloche

Modesta Victoria N° 4450 San Carlos de Bariloche, Río Negro

INTA EEA CHUBUT

Ex Ruta 25 Km. 1480 Trelew. Chubut

INTA EEA Manfredi

Ruta 9 N°636 Manfredi, Córdoba

INTA EEA Pergamino

Av Frondizi, (Ex Ruta 32) Km 4,5 Pergamino, Buenos Aires

INTA EEA Salta

Ruta Nacional 68 – Km 172 Cerrillos, Salta

INTA EEA San Luis

Ruta Nacional 7 y 8 Villa Mercedes, San Luis

ISETA - Instituto Superior Experimental de Tecnología Alimentaria

Hipólito Irigoyen N°931 9 de Julio, Buenos Aires

La Buena Tierra

Vicario Segura N°754 San Fernando del Valle de Catamarca Catamarca

LABOR AGRO

Meliton Juarez N°233 Gualeguay, Entre Ríos

Laboratorio Agrícola Ariel Grub

Estrada N°954 Trenque Lauquen, Buenos Aires

Laboratorio Agrícola Venado Tuerto

López Nº 1285 Venado Tuerto, Santa Fe

Laboratorio Agropecuario Lobería

Av. San Martín Nº 652 Lobería, Buenos Aires

Laboratorio de Análisis Mónica Sarmiento

Sadi Carnot N°855 Tres Arroyos, Buenos Aires

Laboratorio de Análisis de suelo. Asociación Escuela Agropecuaria

Avenida Mariano Unzué S/N Bolívar, Buenos Aires

Laboratorio de Análisis de Suelos. UNICEN

Av. República de Italia N°780 Azul, Buenos Aires

Laboratorio de Química Agrícola. UNRN

Garrone N°181 Viedma, Río Negro

Laboratorio de Suelos. CIEFAP. UNPSJB

Ruta 259 Km 4 Esquel, Chubut

Laboratorio de Suelos Mariana Porsborg

Av. Moreno N° 420 Tres Arroyos, Buenos Aires

Laboratorio de Suelos, Sustratos, Aguas y Plantas FAUBA

Av. San Martín N°4453 Ciudad Autónoma de Buenos Aires

Laboratorio Demeter

Cuatro 55 Ordónez, Córdoba

Laboratorio Diagnóstico Veterinario TANDIL

Caseros N°738 Tandil, Buenos Aires

Laboratorio Integral

Cabrera N°1234 Río Cuarto, Córdoba

Laboratorio Jarsun

Caseros N° 3332 Córdoba, Córdoba

Laboratorio La Quinta

Francisco Angeloni N°3199 San Justo, Santa Fe

Laboratorio Pablo Marasas

Buchardo N° 365 Lincoln, Buenos Aires

Laboratorio PAMPA

Lamadrid N°1052 Justiniano Posse, Córdoba

Laboratorio Trifolium

J M Leiva N°706 El Trébol, Santa Fe

Laboratorios Carné

Entre Ríos N°247 Corral de Bustos, Córdoba

LAI Suelos

Mitre N°4327 Rosario, Santa Fe

LASAF. Laboratorio de Servicios Agrarios y Forestales. Mercado de Concentración de Neuquén S.A

Santiago del Estero N°426 Neuquén, Neuquén

Latser

Urquiza N°602 Perico, Jujuy

Lucrecia Bauk

Avenida Perón N° 1141 Villa María, Córdoba

Laboratorio Moebius SRL

Dr Domingo Cabred N°4879 Ciudad Autónoma de Buenos Aires

PH7 Diagnóstico Agrícola

Darwin N°55 Yerba Buena, Tucumán

Daniel Rubén Galetto

Perú N°630 Pergamino, Buenos Aires

Servicio Análisis de Suelo. Edafología. UNR

CC14 Campo Experimental Villarino - Zavalla, Santa Fe

Servicios Ecológicos Rosario

Bv. Rondeau N° 304 Rosario, Santa Fe

Soils & Crops Management

L. N. Alem N°66 Chivilcoy, Buenos Aires

SOLUM

Villanueva N°492 Lobos, Buenos Aires

SOLUM AGROTECNOLOGIA

Monseñor D Andrea Nº 78 Carlos Casares, Buenos Aires

Suelos y Laboratorio (Secretaría de Ambiente)

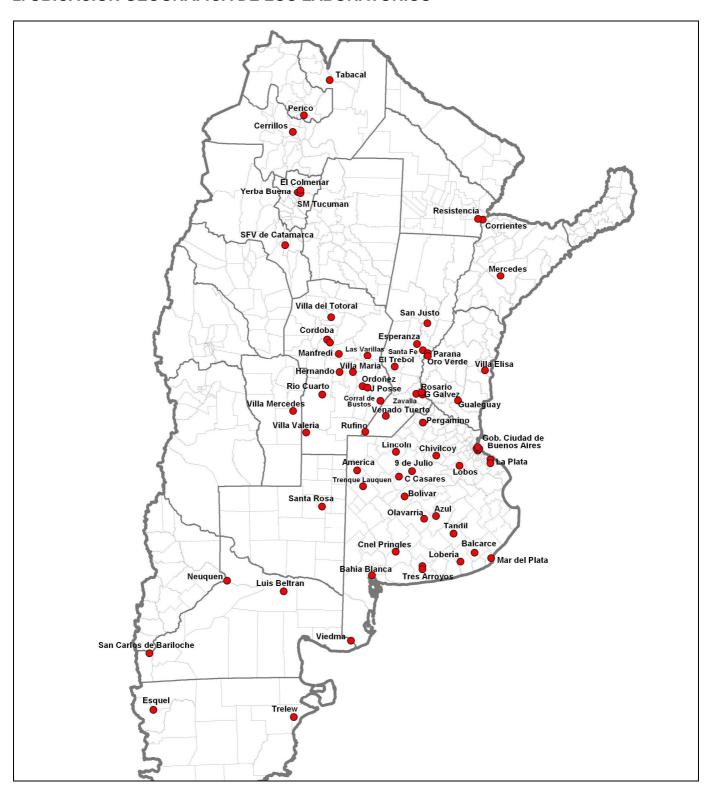
Av Richieri Nº 2187 Córdoba, Córdoba

Tecnoagro SRL

Girardot N°1331 Ciudad Autónoma de Buenos Aires

Tecnosuelo

Pasaje A Mercado N°364 San Miguel de Tucumán, Tucumán


TERRA Laboratorio de análisis de suelo

Plácido Martinez N° 849 Mercedes, Corrientes

TERRAlab

Ruta Nac. Nº9 KM 784 Villa del Totoral, Córdoba

2. UBICACIÓN GEOGRÁFICA DE LOS LABORATORIOS

3. INTRODUCCIÓN

3.1. Presentación del Programa PROINSA

El Programa Nacional de Interlaboratorios de Suelos Agropecuarios (PROINSA) fue creado en el ámbito del Ministerio de Agricultura, Ganadería y Pesca (MAGyP) de la Nación con el objetivo de propender a mejorar la calidad de los resultados analíticos de los ensayos que realizan los laboratorios de suelos públicos y privados de la República Argentina.

El PROINSA está conformado por:

- Coordinación General, a cargo de la Dirección Nacional de Producción Agrícola y Forestal, dependiente de la Secretaría de Agricultura, Ganadería y Pesca (SAGyP)
- Coordinación Operativa, a cargo del Instituto Nacional de Tecnología Agropecuaria (INTA)
- Coordinación Técnica y Evaluadora, a cargo de la Asociación Argentina de la Ciencia del Suelo (AACS) y del Instituto Nacional de Tecnología Industrial (INTI)
- Grupo Consultivo, a cargo del Sistema de Apoyo Metodológico a los Laboratorios de Análisis de Suelos, Agua, Vegetales y Enmiendas Orgánicas (SAMLA) y especialistas invitados.

3.2. Justificación

La producción de granos crece sostenidamente y, si bien hay un incremento significativo en el consumo de fertilizantes, los balances de reposición siguen siendo negativos, agotándose las reservas de nutrientes del suelo que constituyen el capital natural que posee el país.

Los análisis de suelos son una herramienta esencial en la toma de decisiones de los profesionales y productores agropecuarios en esquemas de producción sustentables para la aplicación eficiente de fertilizantes.

Las determinaciones analíticas en laboratorios están sometidas a múltiples fuentes de error que afectan en su conjunto la exactitud de los resultados, pudiendo a través de acciones concretas disminuirse dichas fuentes. Para subsanar estos errores los laboratorios de ensayos deben establecer un sistema de calidad interno que asegure que los factores técnicos, administrativos, humanos y económicos estén controlados con el propósito de prevenir y evitar errores.

Una recomendación de fertilización sobre la base de resultados erróneos es potencialmente conducente a problemáticas de contaminación ambiental y/o deterioro del recurso del suelo, así como también puede conllevar potenciales riesgos económicos.

Es necesario abordar esta problemática armonizando todas las acciones entre sectores públicos y privados.

3.3. Objetivos del PROINSA

• Estimular la participación de los laboratorios nacionales de suelos con fines agropecuarios en programas interlaboratorios.

- Generar un mecanismo de participación y relación amplio y horizontal entre los laboratorios a través de un programa técnico asegurando su amplia difusión en el sector agropecuario.
- Coordinar actividades de capacitación, actualización y difusión para los laboratorios.
- Realizar un diagnóstico periódico de la calidad de los resultados de los laboratorios participantes.
- Facilitar a los usuarios de los ensayos la toma de decisión al conocer qué laboratorios realizan estos controles.
- Validar los métodos de ensayos de suelos.

3.4. Laboratorios participantes

En total acuerdo con los objetivos del PROINSA, pueden participar libremente de la ronda de interlaboratorio todos los laboratorios del país con fines agropecuarios, públicos o privados, que se hayan inscripto dentro del plazo establecido.

4. MUESTRA ENVIADA

4.1. Preparación de la muestra

La muestra enviada fue preparada a partir del horizonte superficial de un suelo natural, clasificado como **Argiudol ácuico**, **franco arcillo limoso**, de la región pampeana húmeda, utilizado con fines agrícolas. La muestra fue acondicionada según lo prescripto por la norma IRAM/SAGPyA Nº 29578 y envasada en recipientes de plástico con tapa autosellante para su transporte hermético.

4.2. Valores de referencia

Para la evaluación del desempeño de los laboratorios participantes se utilizó el valor de consenso estimado como se describe en el ítem 6. Tratamiento estadístico de los resultados.

4.3. Homogeneidad

Se realizó el análisis de homogeneidad de acuerdo a los lineamientos del protocolo de la IUPAC: The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories. (Pure Appl. Chem., Vol 78, Nº 1, pp 145-196, 2006).

Se obtuvieron valores satisfactorios de acuerdo con los valores de repetibilidad de los métodos.

5. RESULTADOS ENVIADOS POR LOS PARTICIPANTES

5.1. Datos enviados

Los datos enviados por los participantes pueden verse en la Tabla 1.

En los gráficos 1 al 11 se muestran los datos enviados por los participantes, el valor medio interlaboratorio y la desviación estándar obtenidos aplicando el procedimiento estadístico descripto en el punto 6.

5.2. Métodos de ensayo

Las técnicas y los métodos de análisis utilizados fueron elegidos por los participantes y se muestran en la Tabla 2.

6. TRATAMIENTO ESTADISTICO DE LOS RESULTADOS

En la primera etapa de la evaluación se procede al examen crítico de los datos, descartándose aquellos que resultan obviamente discordantes ya sea porque sus valores son varios órdenes de magnitud diferente que el valor de consenso o por haber informado en unidades no comparables. En este ejercicio resultaron discordantes los datos del participante n°51 para el parámetro Na+

En una segunda etapa se calculan el valor de consenso y la desviación estándar interlaboratorios.

Como valor asignado a las muestras se utilizó el valor de consenso, calculado como el promedio robusto de los resultados informados por los participantes del ensayo, utilizando el Algoritmo A que se describe en la norma ISO 5725 (1994) Parte 5 (ref. 1).

Para la estimación de la desviación estándar interlaboratorio robusta (s*) se utiliza el Algoritmo A también descripto en la mencionada norma.

La incertidumbre del valor asignado es ux = 1,23 x s*/ \sqrt{p} , donde p es el número de participantes.

Los resultados del análisis estadístico pueden observarse en la siguiente tabla:

Parámetro	Valor medio interlaboratorio	Desviación estándar interlab. (S*)	Desviación estándar interlab. relativa porcentual (%)	Incertidumbre del valor medio
Carbono orgánico oxidable (g/100g)	1,58	0,24	15,4	0,035
Nitrógeno total (g/100g)	0,159	0,018	11,3	0,003
Fósforo extraíble (mg/kg)	47,8	9,5	19,8	1,3
Capacidad de Intercambio Catiónico (cmolc/kg)	22,4	3,5	15,7	0,69
Ca ²⁺ (cmolc/kg)	14,1	1,8	12,8	0,31
Mg ²⁺ (cmolc/kg)	2,35	0,92	39,2	0,16
Na⁺ (cmolc/kg)	0,54	0,21	38,8	0,037
K ⁺ (cmolc/kg)	1,86	0,34	18,3	0,058
pH 1:2,5 (agua)	6,53	0,23	3,5	0,033
Nitratos (mg/kg)	43,5	12,7	29,3	2,09
Sulfatos (mg/kg)	17,3	11,2	64,9	2,3

Los valores obtenidos para los parámetros Nitratos y Sulfatos se muestran a modo informativo. Estos parámetros fueron incluidos en esta ronda con carácter exploratorio para tener una evaluación preliminar de la variabilidad obtenida.

En la Tabla 3 pueden verse los desvíos del promedio de los resultados de cada laboratorio respecto del valor de consenso.

7. EVALUACION DEL DESEMPEÑO DE LOS LABORATORIOS

La evaluación del desempeño de los laboratorios participantes se realizó de acuerdo con los procedimientos aceptados internacionalmente y que se citan en la Bibliografía.

Se utilizó como criterio el cálculo del parámetro "z", definido de la siguiente manera:

$$z = (x_{1/2} - x_{ref}) / s_L$$

Donde:

 $x_{1/2}$ = promedio para cada laboratorio = $\sum x_i / r$

 x_{ref} = valor asignado a los parámetro de la muestra enviada.

En este caso se utilizó el valor de consenso obtenido con el procedimiento descripto en el ítem 6.

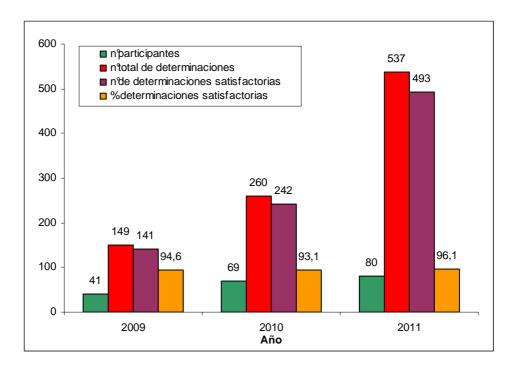
r = número de replicados informados

s_L= desviación estándar (estimador de la reproducibilidad o variancia entre laboratorios)

En este caso es la desviación estándar robusta obtenida como se describió en el ítem 6.

Los valores del parámetro z así obtenidos pueden verse en los gráficos 12 al 20 y en la Tabla 4.

Es posible clasificar a los laboratorios de la siguiente forma:


 $|z| \le 2$ satisfactorio, 2 < |z| < 3 cuestionable, $|z| \ge 3$ no satisfactorio

8. COMENTARIOS

• En la tabla siguiente se resume el porcentaje de determinaciones satisfactorias, cuestionables y no satisfactorias, evaluadas mediante el parámetro z.

Parámetro	Z ≤ 2	2 < Z < 3	Z ≥ 3
Carbono org. oxidable (g/100g)	93,5%	1,3%	5,2%
Nitrógeno total (g/100g)	94,5%	1,8%	3,6%
Fósforo extraíble (mg/kg)	93,5%	5,2%	1,3%
Cap. Inter. Catiónico (cmolc/kg)	92,7%	7,3%	-
Ca ²⁺ (cmolc/kg)	84,6%	1,9%	13,5%
Mg ²⁺ (cmolc/kg)	98,1%	-	1,9%
Na⁺ (cmolc/kg)	82,7%	9,6%	7,7%
K⁺ (cmolc/kg)	87,0%	7,4%	5,6%
pH 1:2,5 (agua)	96,1%	3,9%	-

- Se considera que los porcentajes de determinaciones satisfactorias, cuestionables y no satisfactoria y los valores de desviación estándar obtenidos en el presente ejercicio son satisfactorios, teniendo en cuenta el aumento en la cantidad y complejidad de los parámetros considerados.
- En el siguiente gráfico, a modo comparativo, se muestran el número total de participantes, el número total de determinaciones realizadas, el número total de determinaciones satisfactorias y el porcentaje de determinaciones satisfactorias en los distintos ensayos interlaboratorio realizados hasta la fecha:

 Como comparación a continuación se muestra una tabla con los valores de desviación estándar relativa porcentual obtenidas en los distintos ejercicios realizados hasta el presente para cada uno de los parámetros analizados. Cabe aclarar que en la Ronda Piloto participaron solo algunos laboratorios seleccionados teniendo en cuenta la experiencia de los mismos respecto a su participación en otros programas interlaboratorios.

	Desviación es	tándar interlaboratorio rela	ativa porcentual
Parámetro	Ronda Piloto 2009	Ronda 2010	Ronda 2011
Nitrógeno total (g/100 g)	6,9 %	14,6 %	11,3 %
Fósforo extraíble (mg/kg)	12,5 %	17,4 %	19,8 %
Carbono orgánico oxidable (g/100 g)	10,6 %	13,7 %	15,4 %
рН	2,9 %	4,2 %	3,5 %
Humedad base seca (g/100 g)	31,3 %	33,6 %	
Cap. Inter. Catiónico (cmolc/kg)			15,7 %
Ca ²⁺ (cmolc/kg)			12,8 %
Mg ²⁺ (cmolc/kg)			39,2 %
Na⁺ (cmolc/kg)			38,8 %
K ⁺ (cmolc/kg)			18,3 %
Nitratos (mg/kg)			29,3 %
Sulfatos (mg/kg)			64,9 %

• En el ensayo de Fósforo extraíble 73 laboratorios siguieron la metodología de Bray & Kurtz Nº1 y sólo 4 laboratorios utilizaron la metodología Olsen. Si bien mediante ambos procedimientos se determina el contenido de fósforo extraíble en suelos, sus resultados no son estrictamente comparables. Sin embargo y debido a que el número de laboratorios que aplicaron Olsen es insuficiente para un análisis estadístico discriminado y teniendo en cuenta que la diferencia entre ambos métodos puede ser absorbida por la dispersión obtenida, los resultados fueron incluidos en el análisis general al solo efecto de permitir a dichos laboratorios realizar una comparación estimada de desempeño. A continuación se muestra el valor medio de los laboratorios que utilizaron la metodología Olsen comparados con el valor medio utilizando la metodología Bray & Kurtz Nº1, sin lle gar a realizar afirmaciones concluyentes.

	Fósforo extraíble (mg/	kg)
Metodología	Bray & Kurtz Nኅ	Olsen
Valor medio	48,28	41,5

El valor obtenido por Olsen es un poco menor pero hay que tener en cuenta que ha sido obtenido solo con 4 datos.

9. BIBLIOGRAFIA

- 1. ISO 5725. Parts 1-6 (1994). Accuracy (trueness and precision) of measurement methods and results.
- 2. ISO/IEC 13528 (2005). Statistical methods for use in proficiency testing by interlaboratory comparisons.
- 3. ISO/IEC 17043 Conformity assessment General requirements for proficiency testing..
- 4. Protocol for the design, conduct and interpretation of method performance studies. Pure & Appl. Chem., Vol. 67, 2, 331 343 (1995).
- 5. The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure & Appl. Chem., Vol. 78, 1, 145 196 (2006).
- 6. Guide to Proficiency Testing Australia PTA 2006.
- 7. Quantifying Uncertainty in Analytical Measurement. Eurachem, Second edition (2000).
- 8. Guide to the expression of uncertainty in measurement. ISO, Geneva, Switzerland 1993.

A fin de lograr un mecanismo de mejora continua, solicitamos a los laboratorios que nos envíen cualquier sugerencia o comentario que consideren oportuno. Por otro lado, en caso de tener alguna duda sobre la ejecución de los métodos de ensayo o de las causas de diferencias en los resultados, rogamos nos consulten.

ANEXO 1 TABLAS Y GRÁFICOS

Tabla 1
Datos enviados por los participantes

N°	nH	1:2,5 (agı	ıa)		no org. Ox		Nitr	ógeno t		Fósf	oro extr	aíble
part		1			(g/100g)	I		(g/100g)	ı		(mg/kg)	
_	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3
1	6,55	6,57	6,54	1,51	1,50	1,52	0,175	0,175	0,174	37,20	36,70	35,69
2	6,45	6,40	6,40	1,60	1,63	1,61	0,162	0,164	0,165	60,61	59,27	62,60
3	6,82	6,83	6,76	1,42	1,42	1,42	0,173	0,173	0,173	45,39	44,44	44,13
4	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni
5	6,47	6,45	6,45	2,10	2,10	2,10	0,190	0,200	0,200	30,00	26,00	30,00
6	6,65	6,62	6,56	2,00	2,00	2,06	ni	ni	ni	55,80	56,70	55,80
7	6,69	6,70	6,38	1,30	1,28	1,33	ni	ni	ni	36,65	37,70	36,95
8	6,29	6,30	6,29	1,66	1,74	1,70	ni	ni	ni	52,30	52,80	52,00
9	6,46	6,50	6,48	1,53	1,53	1,63	ni	ni	ni	46,20	46,40	46,70
10	6,68	6,61	6,58	1,27	1,39	1,41	0,130	0,130	0,140	42,23	45,00	46,60
11	6,08	6,17	6,09	1,44	1,30	1,29	0,170	0,160	0,163	56,00	54,25	52,50
12	6,60	6,60	6,60	1,93	1,89	1,93	0,165	0,165	0,168	57,80	57,80	58,00
13	6,70	6,73	6,80	1,48	1,48	1,47	0,160	0,160	0,160	45,80	46,60	48,20
14	6,64	6,55	6,58	1,56	1,57	1,54	0,180	0,188	0,189	54,00	55,00	57,00
15	6,80	6,70	6,80	1,37	1,49	1,46	0,140	0,130	0,150	37,20	35,30	36,40
16	6,69	6,69	6,70	1,77	1,77	1,77	ni	ni	ni	51,30	51,50	51,70
17	6,29	6,29	6,30	1,72	1,70	1,71	0,146	0,150	0,142	24,35	24,13	24,27
18	6,50	6,50	6,50	1,60	1,62	1,60	0,14	0,15	0,15	48	46	48
19	6,71	6,76	6,73	1,71	1,83	1,76	0,147	0,154	0,169	48,00	40,00	45,00
20	6,45	6,45	6,43	1,43	1,43	1,51	0,152	0,157	0,148	47,30	46,70	46,70
21	6,14	6,20	6,22	1,42	1,51	1,39	0,165	0,162	0,160	47,84	47,43	47,60
22	6,31	6,47	6,39	1,62	1,66	1,70	ni	ni	ni	41,70	44,60	47,50
23	5,88	5,96	5,99	1,7690	1,8776	1,8572	ni	ni	ni	45,20	45,80	46,30
24	6,62	6,80	6,75	3,60	3,00	3,12	ni	ni	ni	67,080	68,900	70,460
25	6,86	6,84	6,83	1,19	1,21	1,25	0,190	0,183	0,185	71,41	72,04	71,78
26	6,40	6,30	6,40	1,59	1,55	1,58	ni	ni	ni	33,50	33,70	34,40
27	6,20	6,29	6,30	1,58	1,48	1,57	ni	ni	ni	44,90	45,90	46,40
28	6,70	6,70	6,70	2,00	2,00	2,10	ni	ni	ni	44,20	43,00	44,50
29	6,40	6,40	6,50	1,50	1,50	1,50	0,160	0,150	0,150	54,70	55,90	53,80
30	6,49	6,53	6,52	1,61795	1,65095	1,60861	0,1746	0,1753	0,1804	53,56	51,62	53,88
31	6,30	6,33	6,34	1,40	1,39	1,39	0,149	0,146	0,148	47,60	47,40	49,53
32	6,36	6,51	6,39	1,50	1,61	1,56	0,130	0,140	0,130	39,00	41,00	42,00
33	6,60	6,70	6,60	1,47	1,49	1,47	ni	ni	ni	54,80	53,10	52,40
34	6,72	6,72	6,71	1,84	1,82	1,83	ni	ni	ni	33,25	32,60	32,86
35	6,72	6,74	6,72	1,1475	1,1907	1,1691	0,1699	0,1744	0,1695	39,00	40,00	40,00
36	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni
37	6,75	6,74	6,74	1,7425	1,7575	1,8175	0,1524	0,1557	0,1532	56,994	57,960	55,384
38	6,55	6,53	6,55	1,53	1,55	1,53	ni	ni	ni	29,40	28,52	29,35
39	6,60	6,60	6,50	1,44	1,43	1,45	0,160	0,159	0,161	46,6	46,0	45,9
40	6,70	6,80	6,70	1,47	1,52	1,52	0,160	0,159	0,167	45,2	47,2	44,5
41	6,88	6,87	6,84	1,37	1,37	1,37	0,170	0,169	0,169	67,0	64,7	66,4
42	6,89	6,88	6,88	1,80	2,00	2,00	0,150	0,150	0,160	31,66	31,36	31,66

Tabla 1 (cont)
Datos enviados por los participantes

N°	nH ·	1:2,5 (ag	ıııa)	Ca	rbono o	rg.	Nitróge	no total (g		Fósforo extraíble			
part			•		able (g/1				1	_	(mg/kg)	_	
•	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	
43	6,80	6,80	6,60	3,18	3,38	3,37	ni	ni	ni	59	58	57	
44	6,53	6,56	6,60	2,50	2,59	2,46	0,152	0,170	0,166	61,77	63,13	61,48	
45	6,33	6,39	6,31	14,70	15,00	15,40	0,144	0,145	0,150	57,05	56,80	55,50	
46	6,20	6,30	6,30	1,47	1,48	1,46	ni	ni	ni	51,2	51,2	52,9	
47	6,51	6,54	6,59	1,82	1,84	1,85	0,154	0,153	0,152	31,9	31,8	31,0	
48	6,20	6,20	6,30	1,87	1,84	1,88	0,340	ni	ni	55,0	56,5	56,4	
49	6,41	6,39	6,37	1,54	1,50	1,55	0,230	0,230	0,230	43,19	42,56	42,91	
50	6,47	6,50	6,45	1,97	2,07	2,03	0,140	0,143	0,146	54,6	54,0	53,9	
51	6,64	6,62	6,64	1,30	1,40	1,30	0,140	0,140	0,142	36,20	36,40	37,30	
52	6,28	6,30	6,33	1,28	1,31	1,32	0,149	0,149	0,151	50,93	49,38	50,05	
53	6,70	6,70	6,70	1,83	1,79	1,75	0,166	0,165	0,165	60,6	59,4	59,3	
54	6,58	6,57	6,59	1,47	1,49	1,44	0,176	0,180	0,175	54,6	55,6	54,7	
55	6,44	6,44	6,45	1,36	1,36	1,38	0,1235	0,1235	0,1235	23,06	23,06	23,52	
56	7,12	7,22	7,12	1,86	1,84	1,82	0,160	0,169	0,163	54,47	54,63	56,13	
57	6,45	6,50	6,60	1,4871	1,5129	1,4741	0,1552	0,1591	0,1503	40,80	40,80	40,26	
58	6,59	6,59	6,60	1,45	1,38	1,54	0,144	0,149	0,147	42,1	44,8	41,7	
59	6,59	6,61	6,62	1,60	1,64	1,61	0,145	0,149	0,146	41,00	40,29	42,91	
60	6,40	6,50	6,50	1,51	1,55	1,50	0,154	0,168	0,154	51,3	52,1	51,8	
61	6,79	6,80	6,79	1,45	1,55	1,43	ni	ni	ni	56,86	58,97	59,25	
62	6,36	6,36	6,37	ni	ni	ni	0,181	0,183	0,181	ni	ni	ni	
63	6,57	6,53	6,54	1,28	1,29	1,24	ni	ni	ni	45,89	44,63	45,89	
64	6,82	6,64	6,32	1,50	1,45	1,50	0,168	0,167	0,166	88,6	88,4	87,6	
65	6,83	6,79	6,80	1,41	1,36	1,38	0,170	0,163	0,168	51,20	51,12	52,12	
66	6,04	6,02	6,10	1,47	1,45	1,43	0,136	0,136	0,134	45,04	48,74	49,01	
67	6,95	6,75	6,80	1,60	1,58	1,64	ni	ni	ni	46,9	47,0	47,0	
68	6,40	6,30	6,30	2,04	2,09	2,08	0,171	0,184	0,175	38,0	37,0	38,0	
69	6,52	6,51	6,48	1,60	1,63	1,67	ni	ni	ni	61,3	61,5	62,1	
70	6,10	6,10	6,20	1,47	1,48	1,47	0,167	0,171	0,168	51,2	52,3	53,0	
71	6,80	6,79	6,81	1,38	1,39	1,42	0,147	0,151	0,149	48,2	50,0	49,4	
72	6,38	6,33	6,40	1,56	1,51	1,42	ni	ni	ni	37,8	37,9	38,8	
73	6,30	6,10	6,20	1,291	1,233	1,201	0,130	0,125	0,130	47,9	47,5	49,0	
74	6,40	6,40	6,45	1,32	1,38	1,36	ni	ni	ni	44,1	43,9	45,0	
75	6,25	6,23	6,22	1,38	1,40	1,38	0,141	0,149	0,154	44,0	44,0	45,4	
76	6,79	6,75	6,81	1,62	1,59	1,60	0,195	0,192	0,193	45,91	46,54	48,03	
77	6,10	6,10	6,10	1,49	1,50	1,50	0,130	0,130	0,140	45,0	49,7	53,1	
78	6,32	6,33	6,37	1,2375	1,2735	1,2420	ni	ni	ni	52,91	53,75	52,75	
79	6,61	6,60	6,65	1,78	1,81	1,86	0,150	0,160	0,160	49,0	50,0	49,0	
80	ni	ni	ni	1,67	1,65	1,67	0,150	0,140	0,140	42,16	42,16	43,33	

Tabla 1 (cont)
Datos enviados por los participantes

	Datos enviados por los participantes Cap. Int. Ca ²⁺ Mg										
N°		Cap. Int. ico (cm			Ca (cmolc/kg)		,	Mg ²⁺ cmolc/kg	`		
part		· ·									
	Dato 1		Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3		
1	ni oo 74	ni	ni	ni	ni	ni 45.07	ni	ni	ni 0.40		
2	23,74	24,28	24,30	14,32	14,68	15,07	2,60	2,81	2,42		
3	20,53	20,65	20,55	15,43	15,44	15,43	1,49	1,51	1,54		
4	ni	ni	ni	ni o oo	ni	ni o o o	ni	ni	ni		
5	ni	ni	ni	3,90	3,90	3,90	1,20	1,20	1,20		
6	ni	ni	ni	ni 	ni	ni 10.77	ni	ni	ni		
7	24,78	22,40	23,90	14,50	13,25	13,75	2,00	2,23	2,50		
8	25,90	26,10	25,90	15,75	15,81	15,78	3,89	3,89	3,97		
9	ni	ni	ni	ni	ni	<u>ni</u>	ni	ni	ni		
10	20,00	21,96	22,01	12,33	14,00	14,12	1,66	1,78	1,79		
11	18,87	18,96	19,75	13,50	14,10	13,50	1,50	0,90	2,50		
12	22,10	22,20	22,10	15,50	15,60	15,60	1,60	1,70	1,60		
13	19,01	18,90	18,94	13,75	14,09	14,15	2,37	2,36	2,35		
14	16,90	16,40	15,90	11,80	11,50	12,00	1,70	1,68	1,74		
15	ni	ni	ni	ni	ni	ni	ni	ni	ni		
16	ni	ni	ni	ni	ni	ni	ni	ni	ni		
17	17,84	17,93	18,00	11,00	10,97	11,13	3,62	3,65	3,71		
18	ni	ni	ni	13,1	13,4	13,7	3,0	3,4	3,4		
19	33,00	32,00	31,00	13,80	14,30	13,80	3,30	2,80	4,00		
20	ni	ni	ni	ni	ni	ni	ni	ni	ni		
21	31,66	27,88	27,46	13,60	13,06	13,33	3,73	3,47	3,73		
22	ni	ni	ni	11,96	11,55	12,37	2,39	2,31	2,47		
23	ni	ni	ni	ni	ni	ni	ni	ni	ni		
24	ni	ni	ni	ni	ni	ni	ni	ni	ni		
25	23,14	23,75	23,45	5,10	5,15	5,40	0,89	0,90	0,93		
26	ni	ni	ni	ni	ni	ni	ni	ni	ni		
27	ni	ni	ni	11,50	11,50	11,25	2,156	2,000	2,500		
28	24,50	24,00	24,20	19,00	20,00	19,50	2,50	2,50	1,50		
29	ni	ni	ni	14,00	14,00	14,00	1,40	1,40	1,40		
30	24,53	24,15	24,60	16,667	16,250	16,250	2,167	2,500	2,417		
31	17,56	18,31	18,31	14,50	14,50	14,11	1,57	1,57	1,76		
32	ni	ni	ni	ni	ni	ni	ni	ni	ni		
33	ni	ni	ni	11,80	11,90	12,20	2,40	2,34	2,32		
34	ni	ni	ni	ni	ni	ni	ni	ni	ni		
35	ni	ni	ni	ni	ni	ni	ni	ni	ni		
36	ni	ni	ni	6,53	6,05	6,02	1,51	3,02	2,01		
37	23,125	25,000	21,875	14,40	14,95	15,05	3,30	3,00	2,55		
38	27,77	26,40	27,22	18,05	18,09	18,05	0,63	0,59	0,65		
39	20,90	20,99	21,20	15,20	15,30	15,33	2,00	2,10	2,05		
40	19,20	19,00	19,70	15,30	17,60	16,60	3,10	3,30	3,00		
41	ni	ni	ni	ni	ni	ni	ni	ni	ni		
42	23,20	23,20	22,80	15,25	15,15	15,35	2,53	2,53	2,53		
43	ni	ni	ni	ni	ni	ni	ni	ni	ni		
	o informa		111	- 111	'''	111	<u> </u>	111	111		

Tabla 1 (cont)
Datos enviados por los participantes

		Cap. Int.		on via a c	Ca ²⁺	participa		Mg ²⁺	
N°		ico (cm		((cmolc/kg)		(cmolc/kg)
part	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3
44	ni	ni	ni	ni	ni	ni	ni	ni	ni
45	ni	ni	ni	ni	ni	ni	ni	ni	ni
46	ni	ni	ni	ni	ni	ni	ni	ni	ni
47	22,55	22,84	22,41	14,36	14,55	14,36	2,18	2,19	2,28
48	ni	ni	ni	ni	ni	ni	ni	ni	ni
49	29,74	30,77	30,50	13,98	13,98	13,98	3,88	3,88	3,88
50	28,17	27,37	28,05	14,94	14,78	14,60	2,31	2,06	2,38
51	ni	ni	ni	20,100	19,800	19,800	8,20	8,20	8,20
52	20,60	20,30	20,00	13,50	13,80	13,70	3,90	3,90	4,10
53	29,40	30,55	29,23	16,91	15,71	15,91	1,88	2,07	1,94
54	18,80	19,10	19,60	13,80	14,10	14,30	4,23	4,17	4,28
55	23,913	24,348	24,783	14,52851	14,98538	15,39656	2,36594	2,40673	2,54934
56	16,96	17,13	16,54	12,50	12,65	12,02	1,99	1,93	1,95
57	ni	ni	ni	ni	ni	ni	ni	ni	ni
58	18,43	19,93	19,02	6,85	6,30	7,35	0,88	0,98	0,78
59	ni	ni	ni	ni	ni	ni	ni	ni	ni
60	20,40	20,40	21,20	13,30	13,50	13,60	2,20	2,27	2,27
61	ni	ni	ni	ni	ni	ni	ni	ni	ni
62	ni	ni	ni	14,025	14,030	14,025	0,96	0,96	0,96
63	ni	ni	ni	ni	ni	ni	ni	ni	ni
64	22,05	21,58	21,54	8,86	8,51	8,81	2,53	2,61	2,51
65	27,60	26,60	27,00	13,15	13,10	13,50	3,60	3,40	3,30
66	20,98	21,14	19,78	14,55	15,10	14,70	2,38	2,53	1,87
67	ni	ni	ni	ni	ni	ni	ni	ni	ni
68	22,60	22,50	22,50	14,70	15,10	15,00	1,20	0,50	1,00
69	ni	ni	ni	13,20	13,20	13,40	2,40	2,80	2,60
70	22,50	22,70	23,00	14,80	15,20	15,00	2,20	2,30	2,20
71	21,60	21,00	21,20	14,05	14,20	14,26	2,75	2,80	2,81
72	ni	ni	ni	ni	ni	ni	ni	ni	ni
73	ni	ni	ni	ni	ni	ni	ni	ni	ni
74	ni	ni	ni	ni	ni	ni	ni	ni	ni
75	22,4	23,1	23,1	15,30	15,40	15,30	2,40	2,40	2,40
76	21,10	20,17	20,50	14,90	14,80	15,10	1,50	1,50	1,60
77	20,90	21,30	22,00	14,30	14,80	15,10	2,30	2,40	2,40
78	ni	ni	ni	13,845	13,815	13,910	2,7500	2,7833	2,8167
79	ni	ni	ni	ni	ni	ni	ni	ni	ni
80	21,68	21,80	21,87	15,48	15,59	15,59	2,65	2,75	2,65

Tabla 1 (cont)
Datos enviados por los participantes

N°		Na [†]			K ⁺	•	рани	Nitratos				Sulfatos (mg/kg)			
oart ⊢		cmolc/kg		,	cmolc/kg	f e	(mg/kg) Dato 1 Dato 2 Dato 3				(mg/kg)	<u> </u>			
	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3				Dato 1	Dato 2	Dato 3			
1	ni	ni 	ni	ni	ni	ni									
2	0,72	0,72	0,62	2,00	2,05	2,00	49,28	47,93	49,47	13,70	13,00	12,25			
3	0,47	0,53	0,53	1,42	1,45	1,45	44,83	44,83	43,46	4,8829	4,6732	4,7031			
4	ni 4.00	ni	ni	ni 4.00	ni 4.00	ni 4.00	ni	ni :	ni	ni :	ni :	ni :			
5	4,00	3,00	3,00	1,80	1,80	1,80	ni	ni 40.44	ni 44.00	ni :	ni :	ni :			
7	ni 0.70	ni 0.54	ni 0.57	ni 4.04	ni 4.55	ni 4.64	10,34	10,41	11,28	ni 2.00	ni 2.50	ni			
8	0,73	0,51	0,57	1,84	1,55	1,61	40,75	44,30	41,64	3,00	3,50	2,80			
9	0,51	0,49	0,50	1,75	1,68	1,71	ni 42.29	ni 44.40	ni 44.05	ni ni	ni ni	ni ni			
10	ni 0,42	ni 0,50	ni 0,56	ni 1,89	ni 2.01	ni 2.11	43,28	41,19	41,85	ni ni	ni ni	ni ni			
11	0,42	0,50	0,60		2,01	2,11	ni 40,92	ni 44,00	ni 47,52	ni ni	ni ni	ni			
12	1,00	1,00	1,00	2,23 2,00	2,26 2,10	2,15 2,10	32,80	33,00	32,60	12,90	ni 13,00	13,00			
13	0,34	0,35	0,36	1,91	1,96	1,96	49,80	48,10	50,10	30,00	29,00	27,00			
14	0,34	·		1,72			38,00	39,00	39,00	11,00	12,00	12,00			
15	ni	0,76 ni	0,82	ni	1,92 ni	1,84	103,40	101,64	101,64	21,00	30,00	24,00			
16	ni	ni	ni ni	0,79	0,79	ni 0,79	ni	ni	ni	21,00 ni	ni	24,00 ni			
17	0,10	0,12	0,10	1,01	1,06	1,02	60,50	61,90	60,00	21,00	22,20	22,50			
18	0,10	0,12	0,10	2,00	2,04	2,08	39,87	39,87	44,30	26	27	25			
19	1,40	1,50	1,50	2,70	2,90	2,70	ni	ni	ni	ni	ni	ni			
20	ni	ni	ni	ni	2,90 ni	ni	39,70	39,40	41,20	ni	ni	ni			
21	0,60	0,56	0,56	2,66	2,16	2,33	84,02	73,52	74,24	42,75	51,21	48,48			
22	0,45	0,30	0,30	1,40	1,47	1,54	ni	73,32 ni	ni	ni	ni	ni			
23	ni	ni	ni	ni	ni	ni									
24	ni	ni	ni	ni	ni	ni	50,79	69,26	80,81	ni	ni	ni			
25	0,57	0,57	0,59	2,50	2,55	2,52	8,94	9,70	9,27	5,99	5,88	5,39			
26	ni	ni	ni	ni	ni	ni	36,65	37,70	41,73	ni	ni	ni			
27	0,40	0,40	0,40	1,65	1,65	1,60	10,42	10,20	10,55	11,90	12,30	11,60			
28	1,10	1,00	0,40	1,10	1,10	1,10	ni	ni	ni	ni	ni	ni			
29	0,70	0,70	0,70	2,30	2,30	2,30	43,40	44,00	43,40	40,00	37,00	39,00			
	2,06522			2,56	2,56	2,50		58,9867		16,6643	17,1702	ni			
31	0,29	0,30	0,31	1,84	1,89	1,84	59,74	51,03	53,72	ni	ni	ni			
32	ni	ni	ni	ni	ni	ni									
33	0,45	0,41	0,40	1,70	1,67	1,78	58,03	57,59	56,70	19,50	20,40	19,80			
34	ni	ni	ni	ni	ni	ni	47,27	47,27	47,42	ni	ni	ni			
35	ni	ni	ni	ni	ni	ni	75,00	80,00	69,00	ni	ni	ni			
36	ND	ND	ND	2,20	2,00	2,40	ni	ni	ni	ni	ni	ni			
	1,07164			1,74531	1,78098	1,77334	9,82	11,09	10,69	ni	ni	ni			
38	0,70	0,67	0,70	2,14	2,09	2,14	ni	ni	ni	ni	ni	ni			
39	0,71	0,64	0,70	1,99	1,96	1,89	38,80	39,90	38,00	ni	ni	ni			
40	0,40	0,30	0,40	1,80	1,80	1,80	46,00	45,00	45,00	21,60	26,40	26,10			
		•										4,90			
												ni			
												5,70			
41 42 43	ni 0,31 ni	ni 0,30 ni	ni 0,31 ni	ni 1,79 ni	ni 1,81 ni	ni 1,81 ni	10,20 ni 42,00	10,00 ni 41,00	9,80 ni 42,00	4,60 ni 9,60	5,00 ni 13,20				

Tabla 1 (cont)
Datos enviados por los participantes

N°	(Na [⁺] cmolc/kg)	(K ⁺ cmolc/kg)	-	Nitratos (mg/kg)		Sulfatos (mg/kg)			
part	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	Dato 1	Dato 2	Dato 3	
44	0,132	0,143	0,143	0,10	0,10	0,10	ni	ni	ni	ni	ni	ni	
45	ni	ni	ni	ni	ni	ni	9,10	9,50	9,00	ni	ni	ni	
46	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	
47	0,44	0,45	0,46	2,10	2,10	2,10	37,42	36,37	37,16	9,66	10,23	10,02	
48	ni	ni	ni	ni	ni	ni	42,20	49,10	45,60	ni	ni	ni	
49	0,45	0,45	0,45	1,16	1,16	1,16	175,07	170,22	170,22	24,48	22,86	23,10	
50	0,35	0,37	0,34	1,65	1,57	1,71	38,70	38,28	38,53	73,50	69,90	74,70	
51	21,70	22,40	22,40	1,12	1,19	1,19	5,50	5,50	5,00	ni	ni	ni	
52	0,40	0,40	0,40	1,90	1,80	1,80	51,80	54,10	50,20	7,30	8,30	7,60	
53	0,50	0,48	0,44	1,98	1,92	1,97	38,40	38,10	38,10	8,60	8,90	5,50	
54	0,71	0,73	0,73	1,97	2,00	2,02	64,70	63,80	62,40	59,40	58,50	60,30	
55	0,47826	0,47826	0,52174	1,84615	1,84615	1,87179	ni	ni	ni	ni	ni	ni	
56	0,64	0,56	0,64	1,90	1,85	1,90	35,50	35,10	35,90	15,30	15,50	15,00	
57	ni	ni	ni	ni	ni	ni	42,9714	42,4000	42,9714	21,27	21,27	22,12	
58	0,74	0,74	0,69	1,95	2,08	1,93	48,80	44,90	42,70	11,03	15,34	15,34	
59	ni	ni	ni	ni	ni	ni	ni	ni	ni	15,95	16,01	15,00	
60	0,61	0,59	0,62	1,90	1,80	1,70	45,20	45,20	45,10	27,00	31,50	31,20	
61	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	ni	
62	0,572	0,552	0,566	2,102	2,098	2,106	ni	ni	ni	ni	ni	ni	
63	ni	ni	ni	ni	ni	ni	45,80	37,00	48,40	ni	ni	ni	
64	1,17	1,17	1,13	1,96	1,97	1,96	38,00	40,50	42,50	ni	ni	ni	
65	0,518	0,494	0,508	1,342	1,318	1,320	31,11	30,66	31,66	14,44	18,86	17,87	
66	0,41	0,44	0,44	2,06	2,06	2,06	ni	ni	ni	ni	ni	ni	
67	ni	ni	ni	ni	ni	ni	251,70	258,70	254,10	29,80	26,00	27,75	
68	0,40	0,30	0,40	1,40	1,40	1,40	33,00	34,00	36,00	ni	ni	ni	
69	0,57	0,58	0,51	5,58	5,52	5,51	47,00	46,00	49,00	ni	ni	ni	
70	0,40	0,40	0,40	2,10	1,90	2,00	47,30	48,10	52,10	27,00	32,00	31,00	
71	0,60	0,60	0,64	1,80	1,88	1,78	49,70	51,00	48,60	5,10	4,80	5,00	
72	ni	ni	ni	ni	ni	ni	36,39	33,53	34,58	ni	ni	ni	
73	ni	ni	ni	ni	ni	ni	27,80	24,30	25,90	ni	ni	ni	
74	ni	ni	ni	ni	ni	ni	46,10	47,80	45,60	ni	ni 	ni	
75	0,3200	0,3300	0,3100	1,810	1,850	1,880	37,5	41,2	45,7	16,4	17,5	17,9	
76	0,33	0,36	0,36	1,75	1,71	1,76	46,03	46,51	46,65	8,24	8,51	8,01	
77	0,50	0,40	0,40	1,80	1,90	1,90	46,30	47,40	49,30	8,80	8,50	9,00	
78	0,2304	0,2391	0,2087	1,8692	1,8359	1,8385	ni	ni	ni	3,20	3,80	4,10	
79	ni	ni	ni 0.54	ni	ni	ni	39,36	39,32	39,33	ni	ni	ni	
80	0,51	0,51	0,51	1,91	1,93	1,93	ni	ni	ni	ni	ni	ni	

Tabla 2 Métodos utilizados por los participantes

N°	рН			Org Oxidable		Nitr	ógeno Total
part.	Método	Método	Escala	Referencia	Método	Escala	Referencia
1	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	Proyecto IRAM-SAGPyA 29571-3	Kjeldahl	Micro	Proyecto IRAM-SAGPyA 29572-2
2	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
3	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Semimicro	ni
4	-	-	-	-	-	-	-
5	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	Semimicro	ni
6	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
7	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
8	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ISO 14235:1998	-	-	-
9	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	1	-	-
10	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
11	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
12	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
13	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
14	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
15	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Semimicro	Proyecto IRAM-SAGPyA 29572-1
16	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
17	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
18	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	Semimicro	ni
19	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
20	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Micro	ni
21	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
22	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	1	-	-
23	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	1	-	1
24	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	-	-	-
25	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Dumas		Autoanalizador
26	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	PROMAR-SAMLA	-	-	-
27	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
28	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	-	-	-

Tabla 2 (cont) Métodos utilizados por los participantes

N°	рН			Org Oxidable	Nitrógeno Total		
part.	Método	Método	Escala	Referencia	Método	Escala	Referencia
30	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Micro	ni
31	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Semimicro	ni
32	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
33	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
34	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	-	-	-
35	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	Proyecto IRAM-SAGPyA 29571-3	Kjeldahl	Micro	Proyecto IRAM-SAGPyA 29572-2
36	-	-	-	-	-	-	-
37	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
38	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	-	-	-
39	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Semimicro	ni
40	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	Micro	ni
41	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
42	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
43	Potenciométrico. Susp. 1:2.5	Walkley y Black	Macro	Propio	ı	-	-
44	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	Micro	ni
45	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	Micro	ni
46	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	ı	-	-
47	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	PROMAR-SAMLA	Kjeldahl	Micro	SAMLA - PROMAR
48	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	No válido	-
49	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	Semimicro	ni
50	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Semimicro	Proyecto IRAM-SAGPyA 29572-1
51	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Semimicro	ni
52	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Macro	ni
53	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
54	Potenciométrico. Susp. 1:2.5	Walkley y Black	Macro	ni	Kjeldahl	Macro	ni
55	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
56	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
57	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Semimicro	ni

Tabla 2 (cont)
Métodos utilizados por los participantes

N°	рН		Carbon	o Org Oxidable			Nitrógeno Total
part.	Método	Método	Escala	Referencia	Método	Escala	Referencia
59	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Semimicro	ni
60	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
61	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	-	-	-
62	Potenciométrico. Susp. 1:2.5	-	-	-	Kjeldahl	ni	ni
63	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
64	Potenciométrico. Susp. 1:2.5	Walkley y Black	Macro	Methods of Soil Analysis - Black et al	Kjeldahl	Macro	Methods of Soil Analysis
65	Potenciométrico. Susp. 1:2.5	Walkley y Black	Macro	SAMLA - PROMAR	Kjeldahl	Macro	SAMLA - PROMAR
66	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	Macro	SAMLA - PROMAR
67	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	-	-	-
68	Potenciométrico. Susp. 1:2.5	Walkley y Black	Macro	SAMLA - PROMAR	Kjeldahl	Micro	SAMLA - PROMAR
69	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
70	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	Proyecto IRAM-SAGPyA 29572 (Parte ?)
71	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	Kjeldahl	Micro	ni
72	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	-	-	-
73	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	ni	ni
74	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	ni	-	-	-
75	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	ni	ni
76	Potenciométrico. Susp. 1:2.5	Walkley y Black	ni	ni	Kjeldahl	ni	ni
77	Potenciométrico. Susp. 1:2.5	Walkley y Black	Semimicro	Proyecto IRAM-SAGPyA 29571-2	Kjeldahl	Micro	ni
78	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni		-	-
79	Potenciométrico. Susp. 1:2.5	Walkley y Black	Micro	ni	Kjeldahl	Semimicro	ni
80	-	Walkley y Black	ni	ni	Kjeldahl	ni	ni

Tabla 2 (cont)
Métodos utilizados por los participantes

N°		Fósforo extraíble	CIC	Ca ²⁺	Mg ²⁺	Na⁺
part.	Método	Referencia	Método	Método	Método	Método
1	OLSEN	Proyecto IRAM-SAGPyA 29570-2				
2	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
3	Bray y Kurtz I	ni	Valor S	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
4						
5	Bray y Kurtz I	ni		ni	ni	ni
6	Bray y Kurtz I	ni				ni
7	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
8	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	ni
9	Bray y Kurtz I	ni				ni
10	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
11	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
12	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
13	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	AA	AA	AA
14	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
15	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1				
16	Bray y Kurtz I	ni				
17	Bray y Kurtz I	ni	ni	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
18	Bray y Kurtz I	ni		ni	ni	ni
19	Bray y Kurtz I	ni	AcNa 1 M pH 8.2	ni	ni	ni
20	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1				
21	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
22	Bray y Kurtz I	ni		ni	ni	ni
23	Bray y Kurtz I	ni				
24	OLSEN	Proyecto IRAM-SAGPyA 29570-2				
25	Bray y Kurtz I	ni	AcNH4 1 M pH 7	AA	AA	Fotometría de llama
26	Bray y Kurtz I	ni				
27	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1		Volumetría EDTA	Volumetría EDTA	Fotometría de llama

Tabla 2 (cont)
Métodos utilizados por los participantes

N°		Fósforo extraíble	CIC	Ca²⁺	Mg ²⁺	Na⁺
part.	Referencia	Referencia	Método	Método	Método	Método
28	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
29	Bray y Kurtz I	ni		Volumetría EDTA	Volumetría EDTA	Fotometría de llama
30	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
31	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
32	Bray y Kurtz I	ni				
33	Bray y Kurtz I	ni		ni	ni	ni
34	Bray y Kurtz I	ni				
35	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1				
36				Volumetría EDTA	Volumetría EDTA	Fotometría de llama
37	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
38	OLSEN	Proyecto IRAM-SAGPyA 29570-2	AcNa 1 M pH 8.2	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
39	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
40	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni
41	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1				
42	OLSEN	Proyecto IRAM-SAGPyA 29570-2	AcNH4 1 M pH 7	AA	AA	AA
43	Bray y Kurtz I	ni				
44	Bray y Kurtz I	ni				Fotometría de llama
45	Bray y Kurtz I	ni				
46	Bray y Kurtz I	ni				
47	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
48	Bray y Kurtz I	ni				
49	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
50	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
51	Bray y Kurtz I	ni		ni	ni	ni
52	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNa 1 M pH 8.2	ni	ni	ni
53	Bray y Kurtz I	ni	AcNH4 1 M pH 7	AA	AA	AA
54	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama

Tabla 2 (cont)
Métodos utilizados por los participantes

N°		Fósforo extraíble	CIC	Ca2+	Mg2+	Na+
part.	Referencia	Referencia	Método	Método	Método	Método
56	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
57	Bray y Kurtz I	ni				
58	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
59	Bray y Kurtz I	ni				
60	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	AA	AA	Fotometría de llama
61	Bray y Kurtz I	ni				
62				Volumetría EDTA	Volumetría EDTA	Fotometría de llama
63	Bray y Kurtz I	ni				
64	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
65	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
66	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
67	Bray y Kurtz I	ni				
68	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
69	Bray y Kurtz I	ni		Volumetría EDTA	Volumetría EDTA	ni
70	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
71	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
72	Bray y Kurtz I	ni				
73	Bray y Kurtz I	ni				
74	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1				
75	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	ni	ni	ni
76	Bray y Kurtz I	ni	AcNH4 1 M pH 7	Volumetría EDTA	Volumetría EDTA	Fotometría de llama
77	Bray y Kurtz I	Proyecto IRAM-SAGPyA 29570-1	AcNH4 1 M pH 7	AA	AA	Fotometría de llama
78	Bray y Kurtz I	ni		AA	AA	Fotometría de llama
79	Bray y Kurtz I	ni				
80	Bray y Kurtz I	ni	AcNH4 1 M pH 7	ni	ni	ni

Tabla 2 (cont)
Métodos utilizados por los participantes

n° part.	K⁺	Nitratos	Culfataa
part		Milatos	Sulfatos
P 4. t.	Método	Método	Método
1			
2	Fotometría de llama	Harper mod.	Turbidimétrico
3	Fotometría de llama	Harper mod.	Turbidimétrico
4			
5	ni		
6		Harper mod.	
7	Fotometría de llama	Reducción Cd	Turbidimétrico
8	Fotometría de llama		
9		SNEDD	
10	ni		
11	ni	Reducción Cd	
12	Fotometría de llama	Harper mod.	Turbidimétrico
13	AA	Harper mod.	Turbidimétrico
14	ni	Kit Ensayo	Turbidimétrico
15		Espectrofotometrìa UV	Turbidimétrico
16	Fotometría de llama		
17	Fotometría de llama	ni	Turbidimétrico
18	ni	Microdestilacón	Turbidimétrico
19	ni		
20		Harper mod.	
21	Fotometría de llama	Microdestilacón	Turbidimétrico
22	ni		
23			
24		Kit Ensayo	
25	Fotometría de llama	Harper mod.	Turbidimétrico
26		SNEDD	
27	Fotometría de llama	Harper mod.	Turbidimétrico
28	Fotometría de llama		
29	Fotometría de llama	Microdestilacón	Turbidimétrico
30	Fotometría de llama	SNEDD	Turbidimétrico
31	Fotometría de llama	Ac. Cromotrópico	
32			
33	ni	Potenciométrico	Turbidimétrico
34		Harper mod.	
35		SNEDD	
36	Fotometría de llama		
37	ni	Harper mod.	
38	Fotometría de llama		
39	Fotometría de llama	Harper mod.	
40	ni	SNEDD	Turbidimétrico
		Harper mod.	Turbidimétrico

Tabla 2 (cont)
Métodos utilizados por los participantes

		os por los participantes			
n°	K ⁺	Nitratos	Sulfatos		
part.	Método	Método	Método		
43		Harper mod.	Turbidimétrico		
44	Fotometría de llama				
45		ni			
46					
47	Fotometría de llama	Harper mod.	Turbidimétrico		
48		SNEDD			
49	Fotometría de llama	Microdestilacón	Turbidimétrico		
50	Fotometría de llama	Harper mod.	Turbidimétrico		
51	ni	Harper mod.			
52	ni	Microdestilacón	Turbidimétrico		
53	AA	Harper mod.	Turbidimétrico		
54	Fotometría de llama	Harper mod.	Turbidimétrico		
55	ni				
56	Fotometría de llama	Harper mod.	Turbidimétrico		
57		Harper mod.	Turbidimétrico		
58	Fotometría de llama	SNEDD	Turbidimétrico		
59			Turbidimétrico		
60	Fotometría de llama	Harper mod.	Turbidimétrico		
61					
62	AA				
63		Reducción Cd			
64	ni	Harper mod.			
65	Fotometría de llama	Harper mod.	Turbidimétrico		
66	Fotometría de llama				
67		SNEDD	Turbidimétrico		
68	Fotometría de llama	Harper mod.			
69	ni	Microdestilacón			
70	Fotometría de llama	Harper mod.	Turbidimétrico		
71	Fotometría de llama	Harper mod.	Turbidimétrico		
72		SNEDD			
73		SNEDD			
74		SNEDD			
75	ni	Harper mod.	Turbidimétrico		
76	Fotometría de llama	Harper mod.	Turbidimétrico		
77	Fotometría de llama	SNEDD	Turbidimétrico		
78	Fotometría de llama		Turbidimétrico		
79		Harper mod.			
80	Fotometría de llama				
<u> </u>			1		

Tabla 3
Desvíos respecto del valor medio interlaboratorio

Nº	Carbono or (g/10		Nitróge n (g/10			oro extraible (mg/kg)
Part	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab
1	1,51	-4,6	0,17	10,0	36,5	-23,6
2	1,61	2,0	0,16	3,1	60,8	27,1
3	1,42	-10,2	0,17	9,0	44,7	-6,7
4	-	-	-	-	-	-
5	2,10	32,7	0,20	23,9	28,7	-40,1
6	2,02	27,7	-	-	56,1	17,3
7	1,30	-17,6	-	-	37,1	-22,5
8	1,70	7,4	-	-	52,4	9,5
9	1,56	-1,2	-	-	46,4	-2,9
10	1,36	-14,3	0,13	-16,0	44,6	-6,8
11	1,34	-15,1	0,16	3,5	54,3	13,4
12	1,92	21,1	0,17	4,6	57,9	20,9
13	1,48	-6,7	0,16	0,8	46,9	-2,0
14	1,56	-1,6	0,19	16,9	55,3	15,7
15	1,44	-9,0	0,14	-11,8	36,3	-24,1
16	1,77	11,9	-	-	51,5	7,6
17	1,71	8,1	0,15	-8,0	24,3	-49,3
18	1,61	1,5	0,15	-7,6	47,3	-1,1
19	1,77	11,7	0,16	-1,3	44,3	-7,3
20	1,46	-7,9	0,15	-4,1	46,9	-2,0
21	1,44	-9,0	0,16	2,2	47,6	-0,5
22	1,66	4,9	-	-	44,6	-6,8
23	1,83	16,0	-	-	45,8	-4,3
24	3,24	104,8	-	-	68,8	43,8
25	1,22	-23,1	0,19	17,1	71,7	50,0
26	1,57	-0,6	-	-	33,9	-29,2
27	1,54	-2,5	-	-	45,7	-4,4
28	2,03	28,5		-	43,9	-8,2
29	1,50	-5,2	0,15	-3,4	54,8	14,5
30	1,63	2,8	0,18	11,3	53,0	10,8
31	1,39	-11,9	0,15	-7,0	48,2	0,7
32	1,56	-1,6	0,13	-16,0	40,7	-15,0
33	1,48	-6,7	-	-	53,4	11,7
34	1,83	15,7	- 0.47	- 7.0	32,9	-31,2
35	1,17	-26,1	0,17	7,9	39,7	-17,1
36	- 4 77	- 12.0	- 0.45	-	- 56.0	- 10.7
37	1,77	12,0	0,15	-3,2	56,8	18,7
38	1,54	-2,9	- 0.46	- 0.9	29,1	-39,2
39	1,44	-9,0 5.0	0,16	0,8	46,2	-3,5
40	1,50	-5,0	0,16	2,0	45,6	-4,6
41	1,37	-13,4	0,17	6,7	66,0	38,0
42	1,93	22,2	0,15	-3,4	31,6	-34,0

Tabla 3 (cont)
Desvíos respecto del valor medio interlaboratorio

Nº	Carbono org (g/10		Nitrógeno (g/100		Fósforo extraible (mg/kg)	
Part	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab
45	15,03	850,2	0,15	-7,8	56,5	18,0
46	1,47	-7,1	•	-	51,8	8,2
47	1,84	16,1	0,15	-3,6	31,6	-34,0
48	1,86	17,8	0,34 114,1		56,0	17,0
49	1,53	-3,3	0,23	44,9	42,9	-10,4
50	2,02	27,9	0,14	-9,9	54,2	13,2
51	1,33	-15,7	0,14	-11,4	36,6	-23,4
52	1,30	-17,6	0,15	-5,7	50,1	4,8
53	1,79	13,1	0,17	4,1	59,8	24,9
54	1,47	-7,3	0,18	11,5	55,0	14,9
55	1,37	-13,6	0,12	-22,2	23,2	-51,5
56	1,84	16,3	0,16	3,3	55,1	15,1
57	1,49	-5,7	0,15	-2,5	40,6	-15,1
58	1,46	-7,9	0,15	-7,6	42,9	-10,4
59	1,62	2,2	0,15	-7,6	41,4	-13,5
60	1,52	-3,9	0,16	-0,1	51,7	8,1
61	1,48	-6,7	-	-	58,4	22,0
62	-	-	0,18	14,4	-	-
63	1,27	-19,7	-	-	45,5	-5,0
64	1,48	-6,2	0,17	5,2	88,2	84,3
65	1,38	-12,6	0,17	5,2	51,5	7,6
66	1,45	-8,4	0,14	-14,8	47,6	-0,5
67	1,61	1,5	-	-	47,0	-1,8
68	2,07	30,8	0,18	11,3	37,7	-21,3
69	1,63	3,2	-	-	61,6	28,8
70	1,47	-6,9	0,17	6,2	52,2	9,0
71	1,40	-11,7	0,15	-6,2	49,2	2,8
72	1,50	-5,4	-	-	38,2	-20,2
73	1,24	-21,5	0,13	-19,2	48,1	0,6
74	1,35	-14,5	-	-	44,3	-7,3
75	1,39	-12,4	0,15	-6,8	44,5	-7,1
76	1,60	1,3	0,19	21,8	46,8	-2,1
77	1,50	-5,4	0,13	-16,0	49,3	3,0
78	1,25	-20,9	-	-	53,1	11,1
79	1,82	14,8	0,16	-1,3	49,3	3,1
80	1,66	5,1	0,14	-9,7	42,6	-11,1

Tabla 3 (cont) Desvíos respecto del valor medio interlaboratorio

Nº		ter. Catiónico molc/kg)		Ca+2 molc/kg)	Mg+2 (cmolc/kg)	
Part	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab
1	-	-	-	-	-	-
2	24,1	7,5	14,69	4,5	2,61	11,1
3	20,6	-8,3	15,43	9,8	1,51	-35,6
4	-	1	-	•	-	-
5	-	1	3,90	-72,3	1,20	-48,9
6	-	-	-	-	-	-
7	23,7	5,6	13,83	-1,6	2,24	-4,5
8	26,0	15,8	15,78	12,2	3,92	66,8
9	-	-	-	-	-	-
10	21,3	-4,9	13,48	-4,1	1,74	-25,8
11	19,2	-14,4	13,70	-2,6	1,63	-30,5
12	22,1	-1,3	15,57	10,7	1,63	-30,5
13	19,0	-15,5	14,00	-0,4	2,36	0,5
14	16,4	-26,9	11,77	-16,3	1,71	-27,3
15	-	-	-	-	-	-
16	-	-	-	-	-	-
17	17,9	-20,1	11,03	-21,5	3,66	55,8
18	-	-	13,40	-4,7	3,27	39,1
19	32,0	42,7	13,97	-0,7	3,37	43,3
20	-	-	-	-	-	-
21	29,0	29,3	13,33	-5,2	3,64	55,1
22	-	-	11,96	-14,9	2,39	1,8
23	-	-	-	-	-	-
24	-	-	-	-	-	-
25	23,4	4,5	5,22	-62,9	0,91	-61,4
26	-	-	-	-	-	-
27	-	-	11,42	-18,8	2,22	-5,5
28	24,2	8,0	19,50	38,7	2,17	-7,8
29	-	-	14,00	-0,4	1,40	-40,4
30	24,4	8,9	16,39	16,6	2,36	0,5
31	18,1	-19,5	14,37	2,2	1,63	-30,5
32	-	-	-	-	-	-
33	-	-	11,97	-14,9	2,35	0,2
34	-	-	-	-	-	-
35	-	-	-	-	-	-
36	-	-	6,20	-55,9	2,18	-7,2
37	23,3	4,0	14,80	5,3	2,95	25,6
38	27,1	21,0	18,06	28,5	0,62	-73,5
39	21,0	-6,2	15,28	8,7	2,05	-12,7
40	19,3	-14,0	16,50	17,4	3,13	33,4
41	-	-	-	-	-	-
42	23,1	2,8	15,25	8,5	2,53	7,7

Tabla 3 (cont)
Desvíos respecto del valor medio interlaboratorio

	•	er. Catiónico		Ca+2	,	Mg+2		
No	(cr	molc/kg)	(cr	nolc/kg)	(C	molc/kg)		
Part	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab		
45	-	-	-	-	-	-		
46		-	ı		-	-		
47	22,6	0,8	14,42	2,6	2,22	-5,6		
48		-	ı		-	-		
49	30,3	35,3	13,98	-0,6	3,88	65,2		
50	27,9	24,2	14,77	5,1	2,25	-4,2		
51	-	-	19,90	41,5	8,20	249,1		
52	20,3	-9,5	13,67	-2,8	3,97	68,9		
53	29,7	32,5	16,18	15,1	1,96	-16,4		
54	19,2	-14,5	14,07	0,1	4,23	79,9		
55	24,3	8,6	14,97	6,5	2,44	3,9		
56	16,9	-24,8	12,39	-11,9	1,96	-16,7		
57	•	-	•	-	•	-		
58	19,1	-14,7	6,83	-51,4	0,88	-62,5		
59	•	-	•	-	•	-		
60	20,7	-7,9	13,47	-4,2	2,25	-4,3		
61	-	-	-	-	-	-		
62	-	-	14,03	-0,2	0,96	-59,2		
63	-	-	-	-	-	-		
64	21,7	-3,1	8,73	-37,9	2,55	8,6		
65	27,1	20,7	13,25	-5,8	3,43	46,2		
66	20,6	-8,0	14,78	5,2	2,26	-3,8		
67	-	-	-	-	-	-		
68	22,5	0,5	14,93	6,2	0,90	-61,7		
69	-	-	13,27	-5,6	2,60	10,7		
70	22,7	1,4	15,00	6,7	2,23	-4,9		
71	21,3	-5,2	14,17	0,8	2,79	18,6		
72	-	-	-	-	-	-		
73	-	-	-	-	-	-		
74	-	-	-	-	-	-		
75	22,9	2,0	15,33	9,1	2,40	2,2		
76	20,6	-8,2	14,93	6,2	1,53	-34,7		
77	21,4	-4,6	14,73	4,8	2,37	0,8		
78	-	-	13,86	-1,4	2,78	18,5		
79	-	-	-	-	-	-		
80	21,8	-2,9	15,55	10,6	2,68	14,2		

Tabla 3 (cont) Desvíos respecto del valor medio interlaboratorio

Nº	(0	Na+ molc/kg)	(c	K+ molc/kg)	i	pH 1:2,5 (agua)	
Part	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab	
1	-	-	-	-	6,55	0,4	
2	0,69	26,6	2,02	8,7	6,42	-1,7	
3	0,51	-6,0	1,44	-22,4	6,80	4,3	
4	-	ı	-	ı	-	-	
5	3,33	514,6	1,80	-3,0	6,46	-1,1	
6	-	1	-	1	6,61	1,3	
7	0,60	11,2	1,67	-10,2	6,59	1,0	
8	0,50	-7,8	1,71	-7,7	6,29	-3,6	
9	-	-	-	-	6,48	-0,7	
10	0,49	-9,0	2,00	7,9	6,62	1,5	
11	0,57	4,5	2,21	19,3	6,11	-6,3	
12	1,00	84,4	2,07	11,3	6,60	1,1	
13	0,35	-35,5	1,94	4,7	6,74	3,3	
14	0,77	41,3	1,83	-1,6	6,59	1,0	
15	-	-	-	-	6,77	3,7	
16	-	-	0,79	-57,4	6,69	2,6	
17	0,11	-80,3	1,03	-44,5	6,29	-3,6	
18	0,70	29,1	2,04	9,9	6,50	-0,4	
19	1,47	170,4	2,77	49,1	6,73	3,2	
20	-	-	-	-	6,44	-1,3	
21	0,57	5,7	2,38	28,4	6,19	-5,2	
22	0,45	-17,0	1,47	-20,8	6,39	-2,1	
23	-	-	-	-	5,94	-8,9	
24	-	-	-	-	6,72	3,0	
25	0,58	6,3	2,52	36,0	6,84	4,9	
26	- 0.40	-	-	-	6,37	-2,4	
27	0,40	-26,3	1,63	-12,0	6,26	-4,0	
28	1,02	87,4	1,10	-40,7	6,70	2,7	
29	0,70	29,1	2,30	23,9	6,43	-1,4	
30	2,07	280,8	2,54	37,0	6,51	-0,2	
31	0,30	-44,7	1,86	0,0	6,32	-3,1 1.6	
32 33	0,42	- 22 6	- 1,72	- -7,5	6,42	-1,6 1.7	
33	- 0,42	-22,6	- 1,72	-7,5 -	6,63 6,72	1,7	
35	-	<u>-</u>	-	-	6,72	2,9	
36	-	<u>-</u>	2,20	18,5	-	3,1	
37	1,07	97,6	1,77	-4,8	6,74	3,3	
38	0,69	27,2	2,12	14,4	6,54	0,3	
39	0,68	26,0	1,95	4,9	6,57	0,6	
40	0,00	-32,4	1,80	-3,0	6,73	3,2	
41	-	-32,4	-	-3,0	6,86	5,2	
42	0,31	-43,5	1,80	-2,8	6,88	5,5	
42	0,31	- 4 3,5	1,00	-2,0	0,00	ა,ა	

Tabla 3 (cont)
Desvíos respecto del valor medio interlaboratorio

Nº Part	Na+ (cmolc/kg)		K+ (cmolc/kg)		pH 1:2,5 (agua)	
	V. medio	% desv.v. medio interlab	V. medio	% desv.v. medio interlab	V.medio	% desv.v. medio interlab
45	-	-	-	-	6,34	-2,8
46	-	-	-	-	6,27	-4,0
47	0,45	-17,0	2,10	13,1	6,55	0,3
48	-	-	-	-	6,23	-4,5
49	0,45	-17,0	1,16	-37,5	6,39	-2,1
50	0,35	-34,9	1,64	-11,5	6,47	-0,8
51	22,17	3986,8	1,17	-37,1	6,63	1,7
52	0,40	-26,3	1,83	-1,2	6,30	-3,4
53	0,47	-12,7	1,96	5,4	6,70	2,7
54	0,72	33,4	2,00	7,6	6,58	0,8
55	0,49	-9,2	1,85	-0,1	6,44	-1,3
56	0,61	13,1	1,88	1,5	7,15	9,6
57	-	-	-	-	6,52	-0,1
58	0,72	33,4	1,99	7,0	6,59	1,0
59	-	-	-	-	6,61	1,2
60	0,61	11,8	1,80	-3,0	6,47	-0,9
61	-	-	-	-	6,79	4,1
62	0,56	3,9	2,10	13,3	6,36	-2,5
63	-	-	-	-	6,55	0,3
64	1,16	113,2	1,96	5,6	6,59	1,0
65	0,51	-6,6	1,33	-28,5	6,81	4,3
66	0,43	-20,7	2,06	11,0	6,05	-7,2
67	-	-	-	-	6,83	4,7
68	0,37	-32,4	1,40	-24,6	6,33	-2,9
69	0,55	2,0	5,54	198,3	6,50	-0,3
70	0,40	-26,3	2,00	7,8	6,13	-6,0
71	0,61	13,1	1,82	-1,9	6,80	4,2
72	-	-	-	-	6,37	-2,4
73	-	-	-	-	6,20	-5,0
74	-	-	-	-	6,42	-1,7
75	0,32	-41,0	1,85	-0,5	6,23	-4,5
76	0,35	-35,5	1,74	-6,3	6,78	4,0
77	0,43	-20,1	1,87	0,6	6,10	-6,5
78	0,23	-58,3	1,85	-0,4	6,34	-2,8
79	-	-	-	-	6,62	1,4
80	0,51	-6,0	1,92	3,6	-	-

Tabla 4 Parámetro z

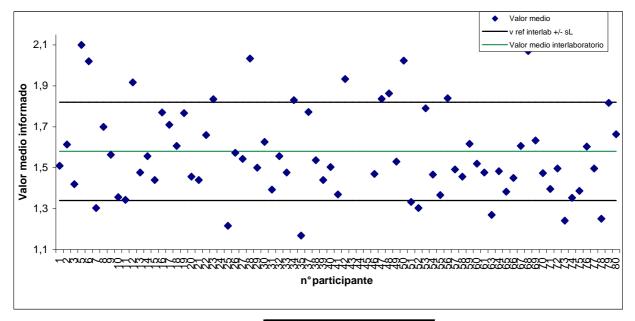
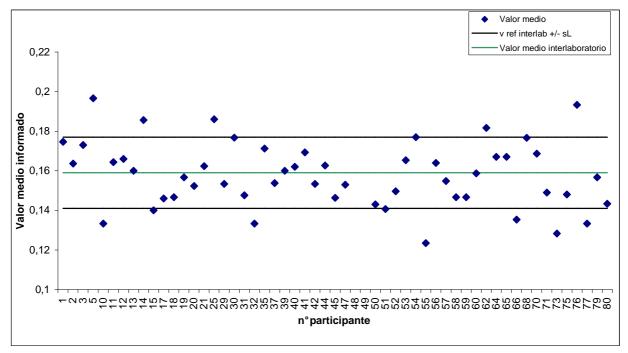

N° part	Carbono ord oxidable	Nitrógeno total	Fósforo extraible	Cap int catiónico	Ca ⁺²	Mg ⁺²	Na⁺	K⁺	рН
1	-0,3	0,9	-1,2	-	-	-	-	-	0,1
2	0,1	0,3	1,4	0,5	0,3	0,3	0,7	0,5	-0,5
3	-0,7	0,8	-0,3	-0,5	0,7	-0,9	-0,1	-1,2	1,2
4	-	-	-	-	-	-	-	-	-
5	2,2	2,1	-2,0	-	-5,7	-1,3	13,3	-0,2	-0,3
6	1,8	-	0,9	-	-	-	-	-	0,3
7	-1,2	-	-1,1	0,4	-0,1	-0,1	0,3	-0,6	0,3
8	0,5	-	0,5	1,0	0,9	1,7	-0,2	-0,4	-1,0
9	-0,1	-	-0,1	-	-	-	-	-	-0,2
10	-0,9	-1,4	-0,3	-0,3	-0,3	-0,7	-0,2	0,4	0,4
11	-1,0	0,3	0,7	-0,9	-0,2	-0,8	0,1	1,0	-1,8
12	1,4	0,4	1,1	-0,1	0,8	-0,8	2,2	0,6	0,3
13	-0,4	0,1	-0,1	-1,0	-0,1	0,0	-0,9	0,2	0,9
14	-0,1	1,5	0,8	-1,7	-1,3	-0,7	1,1	-0,1	0,3
15	-0,6	-1,1	-1,2	-	-	-	-	-	1,0
16	0,8	- 0.7	0,4	-	-	-	-	-3,1	0,7
17	0,5	-0,7	-2,5	-1,3	-1,7	1,4	-2,1	-2,4	-1,0
18	0,1	-0,7	0,0	- 2.7	-0,4	1,0	0,8	0,5	-0,1
19 20	0,8	-0,1	-0,4	2,7	-0,1 -	1,1	4,4	2,7	0,9
21	-0,5	-0,4	-0,1				0,2	- 1,5	-0,4
22	-0,6	0,2	0,0 -0,3	1,9	-0,4 -1,2	1,4			-1,5
23	0,3 1,1	-	-0,3	-	-1,2	0,0	-0,4	-1,1 -	-0,6 -2,6
24	6,9		2,2		-	-	-	_	0,8
25	-1,5	1,5	2,5	0,3	-4,9	-1,6	0,2	2,0	1,4
26	0,0	-	-1,5	-	-	-	-	-	-0,7
27	-0,2	-	-0,2	_	-1,5	-0,1	-0,7	-0,7	-1,2
28	1,9	-	-0,4	0,5	3,0	-0,2	2,3	-2,2	0,7
29	-0,3	-0,3	0,7	-	-0,1	-1,0	0,8	1,3	-0,4
30	0,2	1,0	0,5	0,6	1,3	0,0	7,3	2,0	-0,1
31	-0,8	-0,6	0,0	-1,2	0,2	-0,8	-1,1	0,0	-0,9
32	-0,1	-1,4	-0,8	-	-	-	-	-	-0,5
33	-0,4	-	0,6	-	-1,2	0,0	-0,6	-0,4	0,4
34	1,0	-	-1,6	-	-	-	-	-	0,8
35	-1,7	0,7	-0,9	-	-	-	-	-	0,9
36	-	-	-	-	-4,4	-0,2	-	1,0	-
37	0,8	-0,3	0,9	0,3	0,4	0,7	2,5	-0,3	0,9
38	-0,2	-	-2,0	1,4	2,2	-1,9	0,7	0,8	0,1
39	-0,6	0,1	-0,2	-0,4	0,7	-0,3	0,7	0,3	0,2
40	-0,3	0,2	-0,2	-0,9	1,3	0,9	-0,8	-0,2	0,9
41	-0,9	0,6	1,9	-	-	-	-	-	1,4
42	1,5	-0,3	-1,7	0,2	0,6	0,2	-1,1	-0,2	1,5
43	7,2	-	1,1	-	-	-	-	-	0,9
44	3,9	0,2	1,5	-	-	-	-1,9	-5,2	0,1

Tabla 4 (cont) Parámetro z

N°	Carbono ord	Nitrógeno	Fósforo	Cap int	Ca ⁺²	Mg ⁺²	Na⁺	K⁺	рН
part	oxidable	total	extraible	catiónico	Ca	IVIG	Na	I.V.	-
45	56,1	-0,7	0,9	-	-	-	-	-	-0,8
46	-0,5	-	0,4	-	-	-	-	-	-1,1
47	1,1	-0,3	-1,7	0,1	0,2	-0,1	-0,4	0,7	0,1
48	1,2	10,1	0,9	-	-	-	-	-	-1,3
49	-0,2	3,9	-0,5	2,3	-0,1	1,7	-0,4	-2,1	-0,6
50	1,8	-0,9	0,7	1,6	0,4	-0,1	-0,9	-0,6	-0,2
51	-1,0	-1,0	-1,2	-	3,2	6,4	103,0	-2,0	0,4
52	-1,2	-0,5	0,2	-0,6	-0,2	1,8	-0,7	-0,1	-1,0
53	0,9	0,4	1,3	2,1	1,2	-0,4	-0,3	0,3	0,7
54	-0,5	1,0	0,8	-0,9	0,0	2,0	0,9	0,4	0,2
55	-0,9	-2,0	-2,6	0,6	0,5	0,1	-0,2	0,0	-0,4
56	1,1	0,3	0,8	-1,6	-1,0	-0,4	0,3	0,1	2,7
57	-0,4	-0,2	-0,8	-	-	-	-	-	-0,1
58	-0,5	-0,7	-0,5	-0,9	-4,0	-1,6	0,9	0,4	0,3
59	0,2	-0,7	-0,7	-	-	-	-	-	0,3
60	-0,2	0,0	0,4	-0,5	-0,4	-0,1	0,3	-0,2	-0,3
61	-0,4	-	1,1	-	-	-	-	-	1,1
62	-	1,3	-	-	0,0	-1,5	0,1	0,7	-0,7
63	-1,3	-	-0,2	-	-	-	-	-	0,1
64	-0,4	0,4	4,3	-0,2	-3,0	0,2	2,9	0,3	0,3
65	-0,8	0,4	0,4	1,3	-0,5	1,2	-0,2	-1,6	1,2
66	-0,5	-1,3	0,0	-0,5	0,4	-0,1	-0,5	0,6	-2,1
67	0,1	-	-0,1	-	-	-	-	-	1,3
68	2,0	1,0	-1,1	0,0	0,5	-1,6	-0,8	-1,4	-0,9
69	0,2	-	1,5	-	-0,5	0,3	0,1	10,8	-0,1
70	-0,4	0,5	0,5	0,1	0,5	-0,1	-0,7	0,4	-1,7
71	-0,8	-0,6	0,1	-0,3	0,0	0,5	0,3	-0,1	1,2
72	-0,3	-	-1,0	-	-	-	-	-	-0,7
73	-1,4	-1,7	0,0	-	-	-	-	-	-1,4
74	-0,9	-	-0,4	-	-	-	-	-	-0,5
75	-0,8	-0,6	-0,4	0,1	0,7	0,1	-1,0	0,0	-1,3
76	0,1	1,9	-0,1	-0,5	0,5	-0,9	-0,9	-0,4	1,1
77	-0,3	-1,4	0,2	-0,3	0,4	0,0	-0,5	0,0	-1,9
78	-1,4	-	0,6	-	-0,1	0,5	-1,5	0,0	-0,8
79	1,0	-0,1	0,2	-	-	-	-	-	0,4
80	0,3	-0,9	-0,6	-0,2	0,8	0,4	-0,1	0,2	-


Gráfico 1

Datos enviados por los participantes - Carbono org oxidable

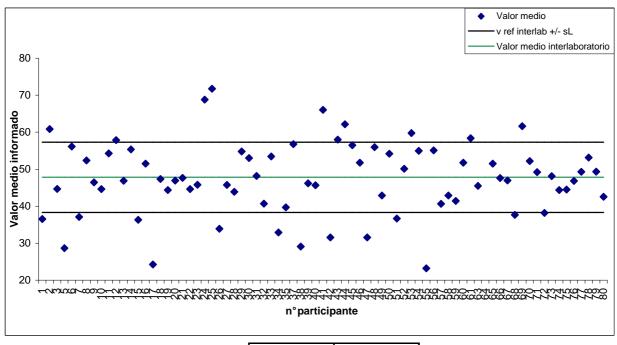

Lab	Valor medio
24	3,24
43	3,31
44	2,52
45	15,03

Gráfico 2
Datos enviados por los participantes - Nitrógeno total

Lab	Valor medio
48	0,34
49	0,23

Gráfico 3
Datos enviados por los participantes - Fósforo extraible

Lab	Valor medio
64	88,2

Gráfico 4
Datos enviados por los participantes - Cap. Inter. Catiónico

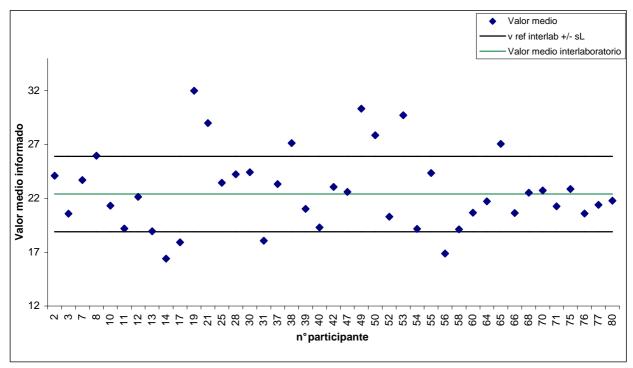
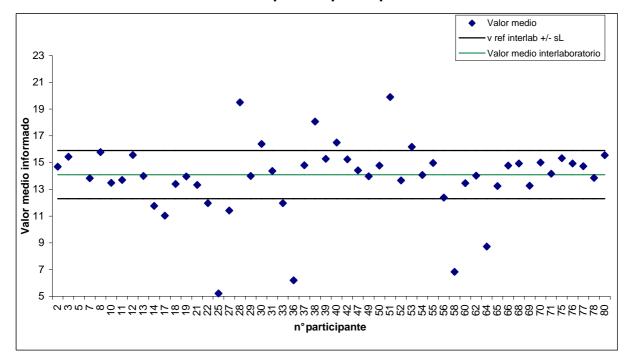



Gráfico 5
Datos enviados por los participantes - Ca+2

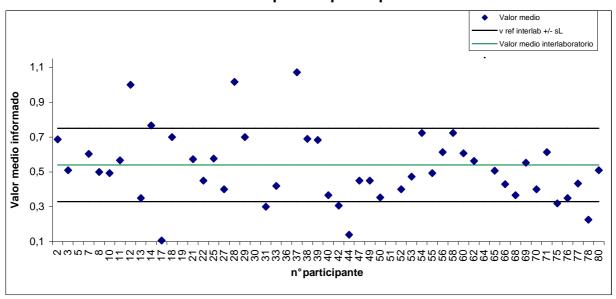

Lab	Valor medio
5	3,9

Gráfico 6
Datos enviados por los participantes - Mg+2

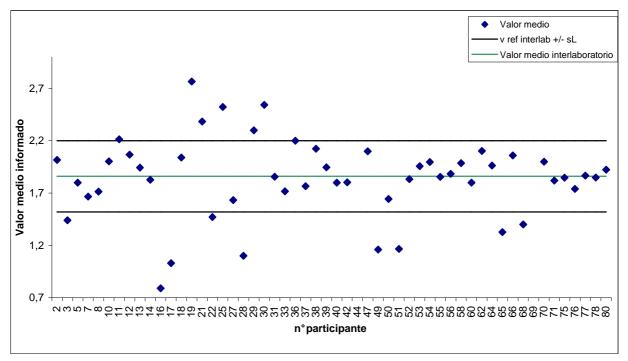

Lab	Valor medio		
51	8,2		

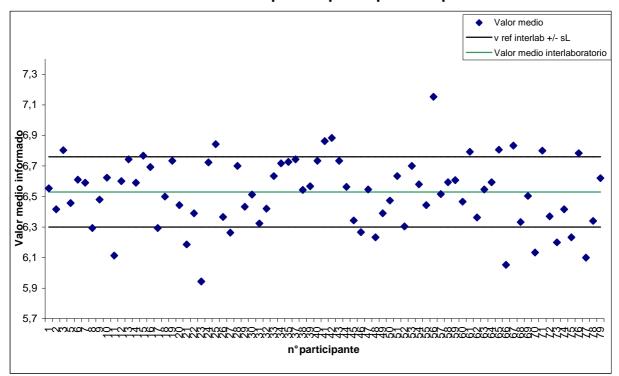
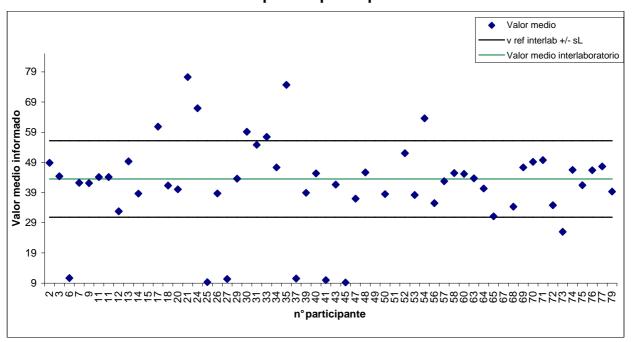
Gráfico 7
Datos enviados por los participantes - Na+

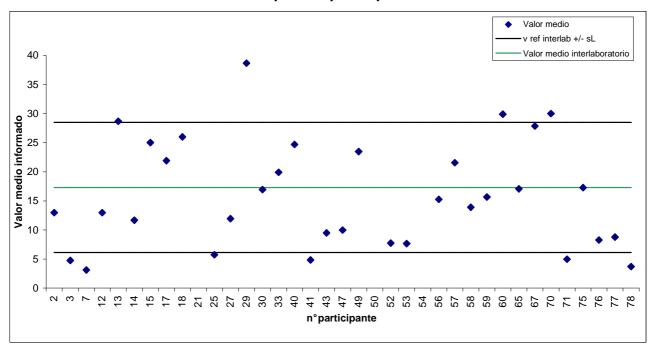
Lab	Valor medio
5	3,33
30	2,07
51	22,17
64	1,15
19	1,46

Gráfico 8 Datos enviados por los participantes - K

Lab	Valor medio
44	0,099
69	5,54

Gráfico 9
Datos enviados por los participantes - pH


Gráfico 10
Datos enviados por los participantes - Nitratos

Lab	Valor medio
15	102,23
25	9,30
49	171,84
51	5,33
67	254,83

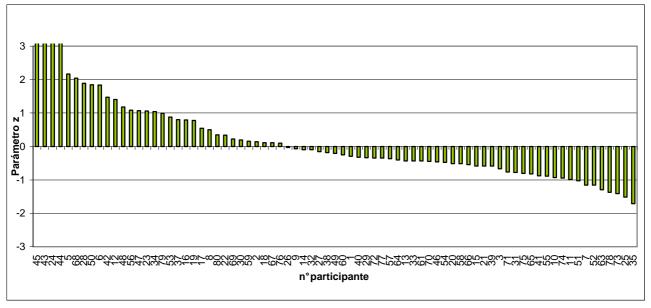

Página 43 de 48

Gráfico 11
Datos enviados por los participantes - Sulfatos

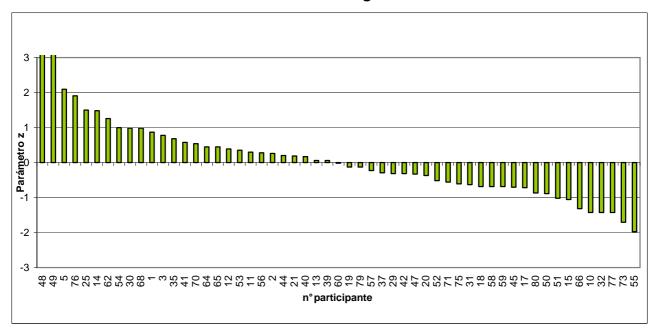

Lab	Valor medio
54	59,4
50	72,7

Gráfico 12
Parámetro z - carbono org. oxidable

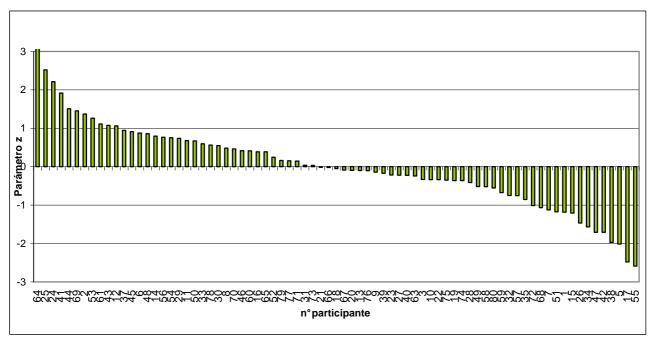

Lab	Z
45	56,1
43	7,2
24	6,9
44	3,9

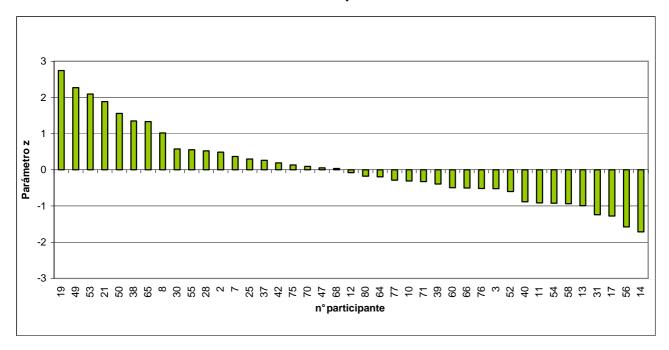
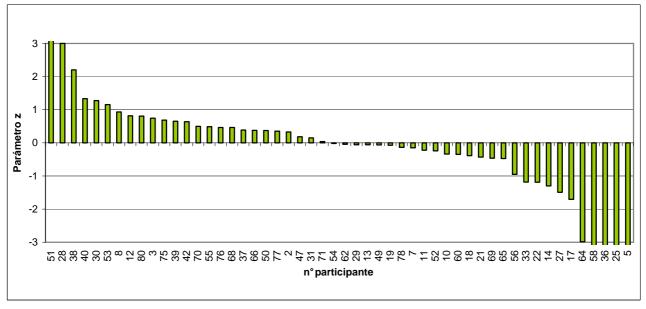
Gráfico 13 Parámetro z - Nitrógeno total

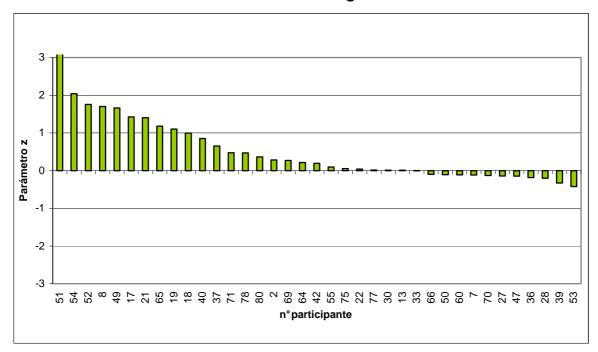
Part.	z
48	10,1
49	3,9

Gráfico 14
Parámetro z - Fósforo extraible

Lab	Z
64	4,3

Gráfico 15 Parámetro z - Cap. Int. Catiónico


Gráfico 16 Parámetro z - Ca+2

Lab	z
51	3,2
28	3,0
64	-3,0
58	-4,0
36	-4,4
25	-4,9
5	-5,7

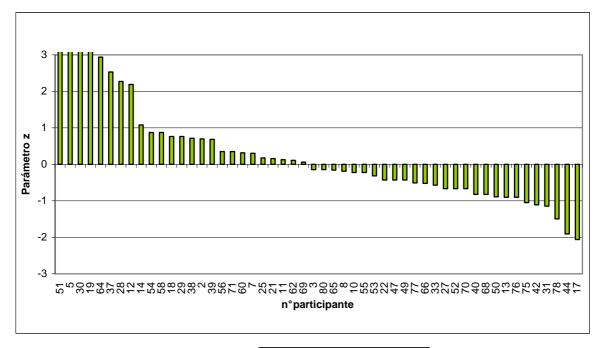

Página 46 de 48

Gráfico 17 Parámetro z - Mg+2

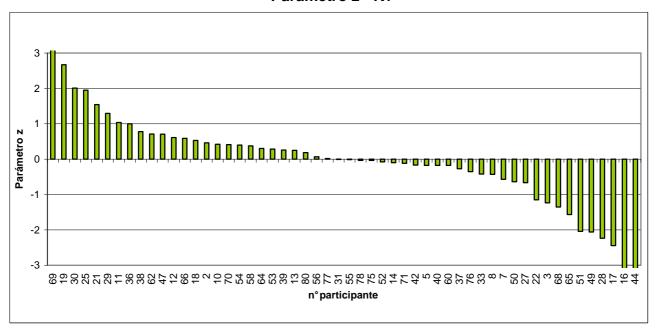

Part.	Z
51	6,4

Gráfico 18 Parámetro z - Na+

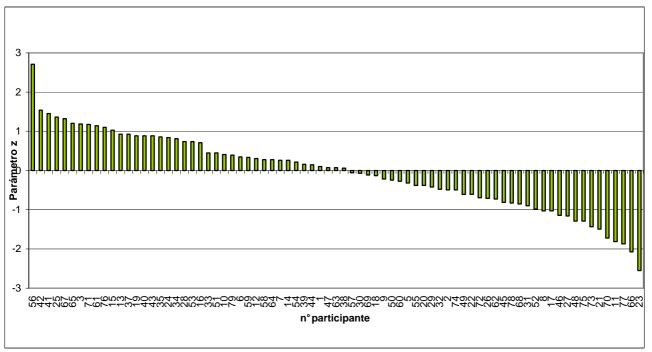

Lab	z
51	103,0
5	13,3
30	7,3
19	4,4

Gráfico 19 Parámetro z - K+

Lab	Z
69	10,8
16	-3,1
44	-5,2

Gráfico 20 Parámetro z - pH

